152 research outputs found

    Bunch by Bunch Feedback and Diagnostics at BESSY II

    Get PDF
    At the light source BESSY II new digital bunch bybunch feedback systems [1] have been put into operation in January 2013, replacing the existing analog as well as the obsolete digital systems. From the first days of operation the new system successfully suppresses transverse and longitudinal beam instabilities in wide range of machine parameters. The system offers also many new diagnostics opportunities. In this contribution first operational experience, the developed data analysis techniques and experimental data will be presente

    Fast Orbit Feedback at BESSY II Performance and Operational Experiences

    Get PDF
    At the 3rd generation light source BESSY II the first phase of a fast orbit feedback system has been completed and put into operation in 2012. In this first phase the aim was to achieve noise suppression in the 1Hz to several 10Hz range, mostly avoiding expensive upgrades to existing hardware, such as beam position monitors and the CAN based setpoint transmission to the power supplies. Only the power supplies were replaced with newer, faster versions. This paper describes the capability of the phase I FOFB with respect to beam motion transient suppression, low frequency damping and high frequency noise generation as well as aspects of operational integration and stabilit

    Coherent Parton Showers with Local Recoils

    Full text link
    We outline a new formalism for dipole-type parton showers which maintain exact energy-momentum conservation at each step of the evolution. Particular emphasis is put on the coherence properties, the level at which recoil effects do enter and the role of transverse momentum generation from initial state radiation. The formulated algorithm is shown to correctly incorporate coherence for soft gluon radiation. Furthermore, it is well suited for easing matching to next-to-leading order calculations.Comment: 24 pages, 3 figure

    Hadronic final states in deep-inelastic scattering with Sherpa

    Full text link
    We extend the multi-purpose Monte-Carlo event generator Sherpa to include processes in deeply inelastic lepton-nucleon scattering. Hadronic final states in this kinematical setting are characterised by the presence of multiple kinematical scales, which were up to now accounted for only by specific resummations in individual kinematical regions. Using an extension of the recently introduced method for merging truncated parton showers with higher-order tree-level matrix elements, it is possible to obtain predictions which are reliable in all kinematical limits. Different hadronic final states, defined by jets or individual hadrons, in deep-inelastic scattering are analysed and the corresponding results are compared to HERA data. The various sources of theoretical uncertainties of the approach are discussed and quantified. The extension to deeply inelastic processes provides the opportunity to validate the merging of matrix elements and parton showers in multi-scale kinematics inaccessible in other collider environments. It also allows to use HERA data on hadronic final states in the tuning of hadronisation models.Comment: 32 pages, 22 figure
    corecore